skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ye, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optically anisotropic materials are sought after for tailoring the polarization of light. Recently, colossal optical anisotropy (Δn = 2.1) was reported in a quasi-one-dimensional chalcogenide, Sr9/8TiS3. Compared to SrTiS3, the excess Sr in Sr9/8TiS3 leads to periodic structural modulations and introduces additional electrons, which undergo charge ordering on select Ti atoms to form a highly polarizable cloud oriented along the c-axis, hence resulting in the colossal optical anisotropy. Here, further enhancement of the colossal optical anisotropy to Δn = 2.5 in Sr8/7TiS3 is reported through control over the periodicity of the atomic-scale modulations. The role of structural modulations in tuning the optical properties in a series of SrxTiS3 compounds with x = [1, 9/8, 8/7, 6/5, 5/4, 4/3, 3/2] is investigated using density-functional-theory (DFT) calculations. The structural modulations arise from various stacking sequences of face-sharing TiS6 octahedra and twist-distorted trigonal prisms and are found to be thermodynamically stable for 1 < x < 1.5. As x increases, an indirect-to-direct band gap transition is predicted for x ≥ 8/7 along with an increased occupancy of Ti-dz2 states. Together, these two factors result in a theoretically predicted maximum birefringence of Δn = 2.5 for Sr8/7TiS3. Single crystals of Sr8/7TiS3 were grown using a molten-salt flux method. Single-crystal X-ray diffraction measurements confirm the presence of long-range order with a periodicity corresponding to Sr8/7TiS3, which is further corroborated by atomic-scale observations using scanning transmission electron microscopy. Polarization-resolved Fourier-transform infrared spectroscopy of Sr8/7TiS3 crystals shows Δn ≈ 2.5, in excellent agreement with the theoretical predictions. Overall, these findings demonstrate the compositional tunability of optical properties in SrxTiS3 compounds by control over atomic scale modulations and suggest that similar strategies could be extended to other compounds having modulated structures. 
    more » « less
    Free, publicly-accessible full text available October 20, 2026
  2. We present an enumerative program synthesis framework calledcomponent-based refactoringthat can refactor “direct” style code that does not use library components into equivalent “combinator” style code that does use library components. This framework introduces a sound but incomplete technique to check the equivalence of direct code and combinator code calledequivalence by canonicalizationthat does not rely on input-output examples or logical specifications. Moreover, our approach can repurpose existing compiler optimizations, leveraging decades of research from the programming languages community. We instantiated our new synthesis framework in two contexts: (i) higher-order functional combinators such asmapandfilterin the staticallytyped functional programming language Elm and (ii) high-performance numerical computing combinators provided by the NumPy library for Python. We implemented both instantiations in a tool calledCobblerand evaluated it on thousands of real programs to test the performance of the component-based refactoring framework in terms of execution time and output quality. Our work offers evidence that synthesis-backed refactoring can apply across a range of domains without specification beyond the input program. 
    more » « less
  3. Abstract Complex oxides offer rich magnetic and electronic behavior intimately tied to the composition and arrangement of cations within the structure. Rare earth iron garnet films exhibit an anisotropy along the growth direction which has long been theorized to originate from the ordering of different cations on the same crystallographic site. Here, we directly demonstrate the three-dimensional ordering of rare earth ions in pulsed laser deposited (EuxTm1-x)3Fe5O12garnet thin films using both atomically-resolved elemental mapping to visualize cation ordering and X-ray diffraction to detect the resulting order superlattice reflection. We quantify the resulting ordering-induced ‘magnetotaxial’ anisotropy as a function of Eu:Tm ratio using transport measurements, showing an overwhelmingly dominant contribution from magnetotaxial anisotropy that reaches 30 kJ m−3for garnets with x = 0.5. Control of cation ordering on inequivalent sites provides a strategy to control matter on the atomic level and to engineer the magnetic properties of complex oxides. 
    more » « less
  4. Chalcogenides in the perovskite and related crystal structures (“chalcogenide perovskites” for brevity) may be useful for future optoelectronic and energy-conversion technologies inasmuch as they have good excited-state, ambipolar transport properties. In recent years, several studies have suggested that semiconductors in the Ba–Zr–S system have slow non-radiative recombination rates. Here, we present a time-resolved photoluminescence (TRPL) study of excited-state carrier mobility and recombination rates in the perovskite-structured material BaZrS 3 , and the related Ruddlesden–Popper phase Ba 3 Zr 2 S 7 . We measure state-of-the-art single crystal samples, to identify properties free from the influence of secondary phases and random grain boundaries. We model and fit the data using a semiconductor physics simulation, to enable more direct determination of key material parameters than is possible with empirical data modeling. We find that both materials have Shockley–Read–Hall recombination lifetimes on the order of 50 ns and excited-state diffusion lengths on the order of 5 μm at room temperature, which bodes well for ambipolar device performance in optoelectronic technologies including thin-film solar cells. 
    more » « less
  5. We report the synthesis of large-area, high-Ti-content, Mo 1−x Ti x S 2 alloy thin films in the 2H phase at temperature as low as 500 °C using a scalable two-step method of metal film deposition, followed by sulfurization in H 2 S. Film processing at higher temperature accelerates Ti segregation, film coarsening, and the formation of TiS 2 in the 1T phase. Crystal growth at higher temperature results in the formation of multiple binary sulfide phases, in agreement with the equilibrium phase diagram. Making highly metastable, smooth, and uniform single-phase alloy films, therefore, hinges on developing low-temperature processing. Our results are relevant to the development of technologies based on designer transition metal dichalcogenide alloys, including in photonic integrated circuits and gas sensing. 
    more » « less
  6. Abstract The synthesis of BaZr(S,Se)3chalcogenide perovskite alloys is demonstrated by selenization of BaZrS3thin films. The anion‐exchange process produces films with tunable composition and band gap without changing the orthorhombic perovskite crystal structure or the film microstructure. The direct band gap is tunable between 1.5 and 1.9 eV. The alloy films made in this way feature one‐hundred‐times stronger photoconductive response and a lower density of extended defects, compared to alloy films made by direct growth. The perovskite structure is stable in high‐selenium‐content thin films with and without epitaxy. The manufacturing‐compatible process of selenization in H2Se gas may spur the development of chalcogenide perovskite solar cell technology. 
    more » « less
  7. Perovskite chalcogenides are gaining substantial interest as an emerging class of semiconductors for optoelectronic applications. High-quality samples are of vital importance to examine their inherent physical properties. We report the successful crystal growth of the model system, BaZrS 3 and its Ruddlesden–Popper phase Ba 3 Zr 2 S 7 by a flux method. X-ray diffraction analyses showed the space group of Pnma with lattice constants of a = 7.056(3) Å, b = 9.962(4) Å, and c = 6.996(3) Å for BaZrS 3 and P 4 2 / mnm with a = 7.071(2) Å, b = 7.071(2) Å, and c = 25.418(5) Å for Ba 3 Zr 2 S 7 . Rocking curves with full width at half maximum of 0.011° for BaZrS 3 and 0.027° for Ba 3 Zr 2 S 7 were observed. Pole figure analysis, scanning transmission electron microscopy images, and electron diffraction patterns also establish the high quality of the grown crystals. The octahedral tilting in the corner-sharing octahedral network is analyzed by extracting the torsion angles. 
    more » « less